3.893 \(\int \frac {x^{11}}{(a+b x^8) \sqrt {c+d x^8}} \, dx\)

Optimal. Leaf size=91 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {d} x^4}{\sqrt {c+d x^8}}\right )}{4 b \sqrt {d}}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {x^4 \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^8}}\right )}{4 b \sqrt {b c-a d}} \]

[Out]

1/4*arctanh(x^4*d^(1/2)/(d*x^8+c)^(1/2))/b/d^(1/2)-1/4*arctan(x^4*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^8+c)^(1/2))*a^
(1/2)/b/(-a*d+b*c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {465, 483, 217, 206, 377, 205} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {d} x^4}{\sqrt {c+d x^8}}\right )}{4 b \sqrt {d}}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {x^4 \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^8}}\right )}{4 b \sqrt {b c-a d}} \]

Antiderivative was successfully verified.

[In]

Int[x^11/((a + b*x^8)*Sqrt[c + d*x^8]),x]

[Out]

-(Sqrt[a]*ArcTan[(Sqrt[b*c - a*d]*x^4)/(Sqrt[a]*Sqrt[c + d*x^8])])/(4*b*Sqrt[b*c - a*d]) + ArcTanh[(Sqrt[d]*x^
4)/Sqrt[c + d*x^8]]/(4*b*Sqrt[d])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 465

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = GCD[m + 1,
n]}, Dist[1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))^q, x], x, x^k], x] /; k != 1] /;
FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 483

Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^(n_))^(q_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Dist[e^n/b, Int[
(e*x)^(m - n)*(c + d*x^n)^q, x], x] - Dist[(a*e^n)/b, Int[((e*x)^(m - n)*(c + d*x^n)^q)/(a + b*x^n), x], x] /;
 FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1] && IntBinomialQ[a, b
, c, d, e, m, n, -1, q, x]

Rubi steps

\begin {align*} \int \frac {x^{11}}{\left (a+b x^8\right ) \sqrt {c+d x^8}} \, dx &=\frac {1}{4} \operatorname {Subst}\left (\int \frac {x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx,x,x^4\right )\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{\sqrt {c+d x^2}} \, dx,x,x^4\right )}{4 b}-\frac {a \operatorname {Subst}\left (\int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx,x,x^4\right )}{4 b}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{1-d x^2} \, dx,x,\frac {x^4}{\sqrt {c+d x^8}}\right )}{4 b}-\frac {a \operatorname {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x^4}{\sqrt {c+d x^8}}\right )}{4 b}\\ &=-\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {b c-a d} x^4}{\sqrt {a} \sqrt {c+d x^8}}\right )}{4 b \sqrt {b c-a d}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {d} x^4}{\sqrt {c+d x^8}}\right )}{4 b \sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 90, normalized size = 0.99 \[ \frac {\frac {\log \left (\sqrt {d} \sqrt {c+d x^8}+d x^4\right )}{\sqrt {d}}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {x^4 \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^8}}\right )}{\sqrt {b c-a d}}}{4 b} \]

Antiderivative was successfully verified.

[In]

Integrate[x^11/((a + b*x^8)*Sqrt[c + d*x^8]),x]

[Out]

(-((Sqrt[a]*ArcTan[(Sqrt[b*c - a*d]*x^4)/(Sqrt[a]*Sqrt[c + d*x^8])])/Sqrt[b*c - a*d]) + Log[d*x^4 + Sqrt[d]*Sq
rt[c + d*x^8]]/Sqrt[d])/(4*b)

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 632, normalized size = 6.95 \[ \left [\frac {d \sqrt {-\frac {a}{b c - a d}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{16} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{8} + a^{2} c^{2} - 4 \, {\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{12} - {\left (a b c^{2} - a^{2} c d\right )} x^{4}\right )} \sqrt {d x^{8} + c} \sqrt {-\frac {a}{b c - a d}}}{b^{2} x^{16} + 2 \, a b x^{8} + a^{2}}\right ) + 2 \, \sqrt {d} \log \left (-2 \, d x^{8} - 2 \, \sqrt {d x^{8} + c} \sqrt {d} x^{4} - c\right )}{16 \, b d}, \frac {d \sqrt {-\frac {a}{b c - a d}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{16} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{8} + a^{2} c^{2} - 4 \, {\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{12} - {\left (a b c^{2} - a^{2} c d\right )} x^{4}\right )} \sqrt {d x^{8} + c} \sqrt {-\frac {a}{b c - a d}}}{b^{2} x^{16} + 2 \, a b x^{8} + a^{2}}\right ) - 4 \, \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x^{4}}{\sqrt {d x^{8} + c}}\right )}{16 \, b d}, \frac {d \sqrt {\frac {a}{b c - a d}} \arctan \left (-\frac {{\left ({\left (b c - 2 \, a d\right )} x^{8} - a c\right )} \sqrt {d x^{8} + c} \sqrt {\frac {a}{b c - a d}}}{2 \, {\left (a d x^{12} + a c x^{4}\right )}}\right ) + \sqrt {d} \log \left (-2 \, d x^{8} - 2 \, \sqrt {d x^{8} + c} \sqrt {d} x^{4} - c\right )}{8 \, b d}, \frac {d \sqrt {\frac {a}{b c - a d}} \arctan \left (-\frac {{\left ({\left (b c - 2 \, a d\right )} x^{8} - a c\right )} \sqrt {d x^{8} + c} \sqrt {\frac {a}{b c - a d}}}{2 \, {\left (a d x^{12} + a c x^{4}\right )}}\right ) - 2 \, \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x^{4}}{\sqrt {d x^{8} + c}}\right )}{8 \, b d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(b*x^8+a)/(d*x^8+c)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(d*sqrt(-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^16 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^8 + a^
2*c^2 - 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^12 - (a*b*c^2 - a^2*c*d)*x^4)*sqrt(d*x^8 + c)*sqrt(-a/(b*c - a*
d)))/(b^2*x^16 + 2*a*b*x^8 + a^2)) + 2*sqrt(d)*log(-2*d*x^8 - 2*sqrt(d*x^8 + c)*sqrt(d)*x^4 - c))/(b*d), 1/16*
(d*sqrt(-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^16 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^8 + a^2*c^2
- 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^12 - (a*b*c^2 - a^2*c*d)*x^4)*sqrt(d*x^8 + c)*sqrt(-a/(b*c - a*d)))/(
b^2*x^16 + 2*a*b*x^8 + a^2)) - 4*sqrt(-d)*arctan(sqrt(-d)*x^4/sqrt(d*x^8 + c)))/(b*d), 1/8*(d*sqrt(a/(b*c - a*
d))*arctan(-1/2*((b*c - 2*a*d)*x^8 - a*c)*sqrt(d*x^8 + c)*sqrt(a/(b*c - a*d))/(a*d*x^12 + a*c*x^4)) + sqrt(d)*
log(-2*d*x^8 - 2*sqrt(d*x^8 + c)*sqrt(d)*x^4 - c))/(b*d), 1/8*(d*sqrt(a/(b*c - a*d))*arctan(-1/2*((b*c - 2*a*d
)*x^8 - a*c)*sqrt(d*x^8 + c)*sqrt(a/(b*c - a*d))/(a*d*x^12 + a*c*x^4)) - 2*sqrt(-d)*arctan(sqrt(-d)*x^4/sqrt(d
*x^8 + c)))/(b*d)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(b*x^8+a)/(d*x^8+c)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:inde
x.cc index_m i_lex_is_greater Error: Bad Argument Value

________________________________________________________________________________________

maple [F]  time = 0.60, size = 0, normalized size = 0.00 \[ \int \frac {x^{11}}{\left (b \,x^{8}+a \right ) \sqrt {d \,x^{8}+c}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^11/(b*x^8+a)/(d*x^8+c)^(1/2),x)

[Out]

int(x^11/(b*x^8+a)/(d*x^8+c)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{11}}{{\left (b x^{8} + a\right )} \sqrt {d x^{8} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(b*x^8+a)/(d*x^8+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^11/((b*x^8 + a)*sqrt(d*x^8 + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^{11}}{\left (b\,x^8+a\right )\,\sqrt {d\,x^8+c}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^11/((a + b*x^8)*(c + d*x^8)^(1/2)),x)

[Out]

int(x^11/((a + b*x^8)*(c + d*x^8)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{11}}{\left (a + b x^{8}\right ) \sqrt {c + d x^{8}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**11/(b*x**8+a)/(d*x**8+c)**(1/2),x)

[Out]

Integral(x**11/((a + b*x**8)*sqrt(c + d*x**8)), x)

________________________________________________________________________________________